

Tweakable Block Cipher Secure Beyond the Birthday Bound in the Ideal Cipher Model

*Byeonghak Lee, Jooyoung Lee KAIST

Outline

- Tweakable block ciphers
- Our contribution
- Proof overview
- Conclusion

Tweakable Block Ciphers (TBCs)

Tweakable Block Ciphers (TBCs)

- A tweakable block cipher \tilde{E} accepts an additional input "tweak"
 - Tweaks are publicly used (like IVs in modes of operation)
 - Changing tweaks should be efficient (compared to changing keys)
 - Each tweak should give an independent permutation
 - Can be used to construct various cryptographic schemes

Construction of TBCs

- Dedicated construction
 - Hasty Pudding, Mercy, Threefish, TWEAKEY framework, etc.
- Permutation-based construction
 - TEM, XPX, etc.
- Block cipher-based construction
 - LRW, XEX, XHX, etc.

Block cipher-based Construction

- Using fixed keys (independent of tweaks)
 - Security is proved in the standard model
 - The underlying BC is replaced by an ideal random permutation (up to the security of TBC)

- Using tweak-dependent keys
 - Suitable when the underlying block cipher *E* uses a lightweight key schedule
 - Security is proved in the ideal cipher model
 - An adversary is allowed oracle access to E

$\widetilde{F}[1], \widetilde{F}[2]$ (Mennink, FSE 2015)

- $\tilde{F}[1]$ is secure up to $2^{2n/3}$ queries
 - BBB-secure with one BC call
- $\tilde{F}[2]$ is secure up to 2^n queries
 - Fully secure with two BC calls

$\widetilde{F}[1], \widetilde{F}[2]$ (Mennink, FSE 2015)

- $\tilde{F}[1]$ is secure up to $2^{2n/3}$ queries
 - BBB-secure with one BC call
- $\tilde{F}[2]$ is secure up to 2^n queries
 - Fully secure with two BC calls
- Both uses tweak dependent keys

$\widetilde{E1}$, ..., $\widetilde{E32}$ (Wang, et. al., AC 2016)

- only xor operation is used
- secure up to 2^n queries
 - Fully secure with two BC calls

$\widetilde{E1}$, ..., $\widetilde{E32}$ (Wang, et. al., AC 2016)

- only xor operation is used
- secure up to 2^n queries
 - Fully secure with two BC calls
 - One call can be saved by precomputation

XHX (Jha, et. al., Latincrypt 2017)

- XHX uses two types of hash functions
 - $g: \delta$ -almost xor-universal and uniform hash function
 - $h: \delta'$ -almost universal and uniform hash function
 - Accepts arbitrary length tweak
- g and h are keyed hash function generated from the master key, but we omit the key and view them as secret key of the construction
- With *n*-bit block cipher using *m*-bit keys, XHX is secure up to $2^{\frac{n+m}{2}}$ queries

Outline

- Tweakable block ciphers
- Our contribution
- Proof overview
- Conclusion

Motivation

- The input size of an *n*-bit block cipher using *m*-bit key is n + m bits
- In the ideal cipher model, its information-theoretic security cannot go beyond n + m bits (due to key exhaustive search)
- With respect to this size, the birthday bound should be $\frac{n+m}{2}$
 - If m = n, it become n, so previous results are birthday bound in this view

Motivation

- The input size of an *n*-bit block cipher using *m*-bit key is n + m bits
- In the ideal cipher model, its information-theoretic security cannot go beyond n + m bits (due to key exhaustive search)
- With respect to this size, the birthday bound should be $\frac{n+m}{2}$
 - If m = n, it become n, so previous results are birthday bound in this view
- Can we go beyond the birthday bound?

- Cascade of two independent copies of XHX
 - E_1 and E_2 are *n*-bit block ciphers using *m*-bit keys
 - g_1 and g_2 are δ -almost uniform and xor-universal functions, and
 - h_1 and h_2 are δ' -almost uniform and universal function
 - Accepts arbitrary length tweak

- Cascade of two independent copies of XHX
 - E_1 and E_2 are *n*-bit block ciphers using *m*-bit \otimes (finite field mult) can be used
 - g_1 and g_2 are δ -almost uniform and xor-universal functions, and
 - h_1 and h_2 are δ' -almost uniform and universal function
 - Accepts arbitrary length tweak

- Cascade of two independent copies of XHX
 - E_1 and E_2 are *n*-bit block ciphers using *m*-bit keys If ||t|| = m, \oplus can be used
 - g_1 and g_2 are δ -almost uniform and xor-universe else, \otimes can be used
 - h_1 and h_2 are δ' -almost uniform and universal function
 - Accepts arbitrary length tweak

- Cascade of two independent copies of XHX
 - E_1 and E_2 are *n*-bit block ciphers using *m*-bit keys
 - g_1 and g_2 are δ -almost uniform and xor-universal functions, and
 - h_1 and h_2 are δ' -almost uniform and universal function
 - Accepts arbitrary length tweak
- Secure up to $2^{\min(\frac{2(n+m)}{3}, n+\frac{m}{2})}$ queries

• If
$$m \le 2n$$
, $\min\left(\frac{2(n+m)}{3}, n+\frac{m}{2}\right) = \frac{2(n+m)}{3}$

Security of XHX2

When g_1 and g_2 are *n*-bit δ -almost uniform and xor-universal hash functions, and h_1 and h_2 are *m*-bit δ' -almost uniform and universal hash functions, one has

$$\begin{split} \mathbf{Adv}_{\mathsf{XHX2}}(p,q) &\leq 64p^{\frac{2}{3}}q^{\frac{2}{3}}\delta\delta' + \frac{256(8q^3 + 2pq^2)^{\frac{1}{2}}\delta^{\frac{1}{2}}\delta'}{N^{\frac{1}{2}}} + \frac{160(16q^3 + 8pq^2 + p^2q)^{\frac{1}{2}}\delta'}{N} \\ &+ 256(16q^3 + 8pq^2 + 2q^2 + 3p^2q)\delta^2(\delta')^2 + \frac{131072n^2q^2\delta'}{N^2} \end{split}$$

where $\delta \approx \frac{1}{2^n}$, $\delta' \approx \frac{1}{2^m}$, p and q are the number of queries to underlying block ciphers and construction

Comparison

Construction	Key size	Security	Efficiency		Def
			Е	⊗/H	Kel.
LRW	2 <i>n</i>	n/2	1	1	[LRW02]
LRW[2]	4n	2n/3, (or 3n/4)	2	2	[LST12, Men18]
LRW[s]	2sn	sn/(s + 2)	S	S	[LS13]
$ ilde{F}[1]$	n	2 <i>n</i> /3	1	1	[Men15]
$ ilde{F}[2]$	n	n	2	0	[Men15]
$\widetilde{E1}, \cdots, \widetilde{E32}$	n	n	2	0	[Lei+16]
XHX	n + m	(n+m)/2	1	1	[Jha+ 17]
XHX2	2n + 2m	min(2(n+m)/3, n+m/2)	2	2	Our work

Security of the 2-round XTX

• XTX is a tweak-length extension scheme (Minematsu and Iwata, IMACC 2015)

• Without allowing block cipher queries (p = 0), we can prove beyond-birthdaybound security for the cascade of two independent XTX constructions.

$$g_1(t) h_1(t) g_2(t) h_2(t)$$

$$x \rightarrow \tilde{E}_{K_1} \rightarrow \tilde{E}_{K_2} \rightarrow y$$

Outline

- Tweakable block ciphers
- Our contribution
- Proof overview
- Conclusion

Distinguishing game

- Adversary tries to distinguish two worlds by making oracle queries
- All the information obtained during the attack is represented by a transcript:

$$\tau = \left(Q_C = \{(t_1, x_1, y_1), \cdots, (t_q, x_q, y_q)\}, Q_{E_j} = \{(j, k_1, u_1, v_1), \cdots, (j, k_p, u_p, v_p)\}\right)$$

Distinguishing game

Upper Bounding the Distinguishing Advantage

- T_{id} : Probability distribution of τ in the ideal world
- T_{re} : Probability distribution of τ in the real world

 $\mathbf{Adv}_{\tilde{E}}(\mathcal{D}) \leq \|\mathbf{T}_{\mathrm{id}} - \mathbf{T}_{\mathrm{re}}\|$

Proof technique

We can use following lemma to upper bound the statistical distance

Security Proof of XHX2 (Sketch)

- 1) Give free queries to the adversary
- 2) Define bad transcripts
- 3) Lower bound the ratio of probabilities of obtaining a good transcript in the real world and in the ideal world
 - $Pr[T_{id} = \tau]$ is easy to compute, while $Pr[T_{re} = \tau]$ is challenging
- 4) Apply the H-coefficient lemma

Representation of Construction Queries

• Reduced query: combine keys and construction queries

$$(t, x, y) \mapsto (h_1(t), h_2(t), x \oplus g_1(t), y \oplus g_2(t), g_1(t) \oplus g_2(t))$$
$$= (k, l, u, v, \Delta)$$

Representation of Construction Queries

 Black dots represent values fixed by block cipher queries, while white dots are "free"

Free additional queries

- To avoid the extreme cases;
 - if there exists $2^n/4$ or more queries to E_i with same key, give full evaluation of the block cipher with that key
 - if there exists $2^n/16$ or more queries to the construction with same tweak, give full evaluation of the construction with that tweak
- This increases the advantage by a constant factor, but it helps the computation of probability

Bad Transcripts (1/2)

- Avoid revealing any colliding internal path
 - If two query collides in all internal path, (white or black dots) it will fix the choice of remaining values (red dots)

Bad Transcripts (2/2)

- Avoid large number of collisions
 - Upper bound the number of colliding pairs

- Avoid a multi-collision with a large multiplicity

- Otherwise, too large proportion of E_1 and E_2 become incompatible

Analyzing Good Transcripts

- Classify good queries into 5 classes
- Estimate the probability of completing the queries in each class
- In this way, we can lower bound $\Pr[T_{re} = \tau]$

(a) $(k, l, u, v, \Delta) \in \mathcal{Q}^{(1)}$

(c) $(k, l, u, v, \Delta) \in \mathcal{Q}^{(3)}$

(d) $(k, l, u, v, \Delta) \in \mathcal{Q}^{(4)}$

Conclusion

• XHX2 is a TBC that is based on an *n*-bit block cipher using *m*-bit key providing $\min\left(\frac{2(n+m)}{3}, n+\frac{m}{2}\right)$ -bit security in the ideal cipher model

As open problems;

- Can we improve our security bound using an alternative approach (e.g., the expectation method)?
- What is the security of the 3-round XHX?
- Is our bound tight? (Generic attacks matching the provable security?)

Thank You Q&A